280 research outputs found

    A model and architecture for situation determination

    Get PDF
    Automatically determining the situation of an ad-hoc group of people and devices within a smart environment is a significant challenge in pervasive computing systems. Current approaches often rely on an environment expert to correlate the situations that occur with the available sensor data, while other machine learning based approaches require long training periods before the system can be used. Furthermore, situations are commonly recognised at a low-level of granularity, which limits the scope of situation-aware applications. This paper presents a novel approach to situation determination that attempts to overcome these issues by providing a reusable library of general situation specifications that can be easily extended to create new specific situations, and immediately deployed without the need of an environment expert. A proposed architecture of an accompanying situation determination middleware is provided, as well as an analysis of a prototype implementation

    MiPOS - the Mote Indoor Positioning System

    Get PDF
    In the past few years, there have been huge research efforts into ubiquitous and context aware platforms that offer a user a custom level of service based on some known local parameters. The utility of such systems is greatly enhanced if a physical locational area can be determined. Recently, hybrid devices have been developed combining low power micro controllers with short range FM radio transceivers. Some location identification work has been carried out with these systems such as the Matrix Pencil approximation technique[8],however most of these all provide information for an ideal square area with no RF obstructions.Here we present MiPOS, a scalable locationing system based on the MICA mote[11] family of devices.The design goal of MiPOS is to provide a low-power, scalable, distributed locationing system suited to an indoor (office) environment.During the presentation of this paper we will highlight solutions in the areas of security, radio and network management and power awareness for a hybrid context aware wearable locationing device

    Towards self-protecting ubiquitous systems : monitoring trust-based interactions

    Get PDF
    The requirement for spontaneous interaction in ubiquitous computing creates security issues over and above those present in other areas of computing, deeming traditional approaches ineffective. As a result, to support secure collaborations entities must implement self-protective measures. Trust management is a solution well suited to this task as reasoning about future interactions is based on the outcome of past ones. This requires monitoring of interactions as they take place. Such monitoring also allows us to take corrective action when interactions are proceeding unsatisfactorily. In this vein, we first present a trust-based model of interaction based on event structures. We then describe our ongoing work in the development of a monitor architecture which enables self-protective actions to be carried out at critical points during principal interaction. Finally, we discuss some potential directions for future work

    Component Location and the Role of Trading in Large Scale Distributed Systems

    Get PDF

    Managing Fault Tolerance Transparently Using CORBA Services

    Full text link

    Analyzing implicit group messaging: a novel messaging paradigm for group-oriented content distribution

    Get PDF

    Engineering intelligent sensor networks with ASSL and DMF

    Get PDF

    Delivering real-world ubiquitous location systems

    Get PDF
    Location-enhanced applications are poised to become the first real-world example of ubiquitous computing. In this paper, we emphasize the practical aspects of getting location-enhanced applications deployed on existing devices, such as laptops, tablets, PDAs, and cell phones, without the need to purchase additional sensors or install special infrastructure. Our goal is to provide readers with an overview of the practical considerations that are currently being faced, and the research challenges that lie ahead. We ground the article with a summary of initial work on two deployments of location- enhanced computing: multi-player location-based games and a guide for the Edinburgh Festival

    A formal model of trust lifecycle management

    Get PDF
    The rapid development of collaborative environments over the internet has highlighted new concerns over security and trust in such global computing systems. The global computing infrastructure poses an issue of uncertainty about the potential collaborators. Reaching a trusting decision in such environments encompasses both risk and trust assessments. While much work has been done in terms of modelling trust, the investigation of the management of trust lifecycle issues with consideration of both trust and risk is less examined. Our previous work addressed the dynamic aspects of trust lifecycle with a consideration of trust formation, exploitation, and evolution. In this paper we provide an approach for formalizing these aspects. As part of the formalization of the trust lifecycle,we introduce a notion of attraction to model the effect of new pieces of evidence on our opinion. The formalization described in this paper constitutes the basis of ongoing work to investigate the properties of the model

    Security models for trusting network appliances

    Get PDF
    A significant characteristic of pervasive computing is the need for secure interactions between highly mobile entities and the services in their environment. Moreover,these decentralised systems are also characterised by partial views over the state of the global environment, implying that we cannot guarantee verification of the properties of the mobile entity entering an unfamiliar domain. Secure in this context encompasses both the need for cryptographic security and the need for trust, on the part of both parties, that the interaction is functioning as expected. In this paper we make a broad assumption that trust and cryptographic security can be considered as orthogonal concerns (i.e. cryptographic measures do not ensure transmission of correct information). We assume the existence of reliable encryption techniques and focus on the characteristics of a model that supports the management of the trust relationships between two devices during ad-hoc interactions
    corecore